按照业内的通用分类,压电晶体大致可分为:石英晶振,陶瓷晶振两种。其中石英晶振中又有许多的小分类,如:无源晶体,有源晶振,圆柱晶振,贴片晶振等等。
在前面的文章中我们有提到关于石英晶振磁控溅射技术原理磁控溅射是在真空条件下导入一定压力的惰性气体(Ar),阴阳极间形成一定强度的电场,并引入强磁场施加影响,使被阳离子轰击而溅射出的靶材金属粒子加速射向欲镀覆基片表面。那么接下来CEOB2B晶振平台将要说的是石英晶振磁控溅射频率微调技术应用及优缺点分析。
在真空等离子体气氛中,氩离子轰击银靶,溅射出高能银粒子射向晶振晶片表面,从而增加表面银电极的厚度,进而改变石英晶体谐振器的谐振频率。其装置示意图如图1.3所示。与蒸发频率微调法类似,磁控溅射频率微调在对石英晶体谐振器进行频率微调时,也分为粗调和细调两步进行。
石英晶振磁控溅射频率微调的优、缺点
优点:
(1)与蒸发频率微调法相比,溅射离子比蒸发原子或分子的平均能量大数十倍,提高了表面原子迁移率及体扩散,使膜层性能及附着力增强。
缺点:
(1)晶振磁控溅射镀覆设备价格昂贵,设备操作、维护复杂。
(2)对于靶材——银的利用率低,最高只能达到50%。
(3)与石英贴片晶振蒸发频率微调法类似,粗调后的膜面已暴露过大气,易被氧化,并且使得表面落上灰尘、杂质颗粒,而细调新镀膜层又较薄,导致膜层结合力差, 易产生脱焊、固熔断线问题。这同样也是磁控溅射频率微调技术的致命缺点。
(4)由于离子对阴极靶材的轰击,使靶材表面溅射出二次电子,这些电子经等离子体后,易堆积在阳极表面,使表面形成电荷积累,无法再继续沉积。
可见,以上两种方法都无法满足大规模工业生产和激烈的市场竞争的需要更能适应生产需求的新型工艺呼之欲出。
我们接着前面介绍到的石英晶振片的由来以及工作原理,我们接着说石英晶振晶片的电极对膜厚监控、速率控制至关重要。目前,市场上提供三种标准电极材料:金、银和合金。
金是最广泛使用的传统材料,它具有低接触电阻,高化学温定性,易于沉积。金最适合于低应力材料,如金,银,铜的膜厚控制。用镀金晶振片监控以上产品,即使频率飘移IMHz,也没有负作用。然而,金电极不易弯曲,会将应力从膜层转移到石英基片上。转移的压力会使晶振片跳频和严重影响质量和稳定性。
银是接近完美的电极材料,有非常低的接触电阻和优良的塑变性。然而,银容易硫化,硫化后的银接触电阻高,降低晶振片上膜层的牢固性。
银铝合金晶振片最近推出一种新型电极材料,适合高应力膜料的镀膜监控,如siO,SiO2,MgF2,TiO2。这些高应力膜层,由于高张力或堆积的引]力,经常会使晶振片有不稳定,高应力会使基片变形而导致跳频。这些高应力膜层,由于高张力或堆积的引力,经常会使贴片晶振,石英晶振片有不稳定,高应力会使基片变形而导致跳频。银铝合金通过塑变或流变分散应力,在张力或应力使基体变形前,银铝电极已经释放了这些应力。这使银铝合金晶振片具有更长时间,更稳定的振动。有实验表明镀Si02用银铝合金晶振片比镀金寿命长400%。
镀膜科技日新月异,对于镀膜工程师来说,如何根据不同的镀膜工艺选择最佳的晶振片确实不易。下面建议供大家参考
(1)镀低应力膜料时,选择镀金晶振片
最常见的镀膜是镀A、Au、Ag、Cu,这些膜层几乎没有应力,在室温下镀膜即可膜层较软,易划伤,但不会裂开或对基底产生负作用。建议使用镀金晶振片用于上述镀膜,经验证明,可以在镀金晶振片镀60000埃金和50000埃银的厚度。
(2)使用镀银或银铝合金镀高应力膜层
NiCr、Mo、Zr、Ni-Cr、Ti、不锈钢这些材料容易产生高应力,膜层容易从晶体基片上剥落或裂开,以致出现速率的突然跳跃或一系列速率的突然不规则正负变动。有时,这些情况可以容忍,但在一些情况下,会对蒸发源的功率控制有不良作用。
(3)使用银铝合金晶振片镀介质光学膜
MgF2、SiO2、A2O3、TiO2膜料由于良好的光学透明区域或折射率特性,被广泛用于光学镀膜,但这些膜料也是最难监控的,只有基底温度大于200度时,这些膜层才会与基底有非常良好的结合力,所以当这些膜料镀在水冷的基底晶振片上,在膜层凝结过程会产生巨大的应力,容易使晶振片在1000埃以内就回失效。
石英晶振在如今产品中的应用变得尤为重要,为了更好的使用晶振,我们除了要知道晶振的生产材料,晶振使用型号参数等一些条件之外,关于晶振的使用注意事项,以及石英晶振,贴片晶振晶片的一些关注点也应该知道.在前面的文章中CEOB2B晶振平台介绍了晶振晶片的由来以及其工作原理,下面我们要介绍的是膜厚控制仪用电子组件引起晶振片的高速振动和晶振监控的优缺点.
膜厚控制仪用电子组件引起晶振片的高速振动,约每秒6百万次(6MHz),镀膜时,测试每秒钟振动次数的改变,从所接受的数据中计算膜层的厚度。为了确保晶振片以6MHz的速度振动,在真空室外装有“振荡器”,与晶控仪和探头接口连接,振荡器通过迅速改变给晶振片的电流使晶振片高速振动。一个电子信号被送回晶控仪。晶控仪中的电路收到电子信号后,计算晶振片的每秒振速。这个信息接着传送到个微处理器,计算信息并将结果显示在晶控仪上:
(1)沉积速率(Rate) (埃/秒)
(2)已沉积的膜厚( Thickness) (埃)
(3)晶振片的寿命(Lie) (%)
(4)总的镀膜时间(Time) (秒)
更加精密的设备可显示沉积速率与时间的曲线和薄膜类型。
石英晶振监控的优缺点
◆优点:
1.晶振法是目前唯一可以同时控制膜层厚度和成膜速率的方法。
2.输出为电讯号,很容易用来做制程的自动控制。
3.对于厚度要求不严格的滤光片可以利用作为自动制程镀膜机。
4.镀金属时,石英监控较光学监控来的方便精确。
◆缺点
1.厚度显示不稳定。
2.只能显示几何厚度,不能显示折射率。
3.一般精密光学镀膜厚度只用做参考,一般用作镀膜速率的控制。
◆所以一台镀膜设备往往同时配有石英晶体振荡器监控法和光学膜厚监控法两套监控系统,两者相互补充以实现薄膜生产过程中工艺参数的准确性和重复性,提高产品的合格率。
在前面的文章中我们了解到了GPS的应用以及高精密石英晶体振荡器在GPS内部所提供到的作用,GPS晶振的工作原理等等。晶振的作用随着科技的发展到如今已是无处不在,各种大大小小的智能科技产品都会用到石英贴片晶振.接下来我们要说到的是GPS信号失效后保持算法的研究以及与晶振之间的联系.
从前面文中介绍GPS接收机的相关介绍可知,1PPS信号可能在多种因素的作用下丢失。如果通过解码发现失效,应立即停止以它作为基准来驯服OCXO晶振,否则可能对OCXO晶振产生误调整,使系统产生很大的误差,但是这时OCXO晶振的输出频率精度会由于老化和温度等因素的影响而不断降低。为了解决这一问题,采用保持算法, 即在正常锁定过程中,实时记录晶振的频率随时间的漂移率,即确定石英晶体老化率曲线,再利用温度传感器,建立温度和频率漂移率的函数关系。当GPS信号失效后,根据以前正常驯服状态下记录的历史数据,通过合理的算法对OCXO晶振输出频率的变化趋势做出准确预测,进而在此基础上实现对频率误差的实时校正,以保证输出频率精度在可容忍的精度范围内,直到GPS信号恢复后再继续锁定晶振。
OCXO石英晶体振荡器的老化模型是非线性的,而其频率温度变化模型则可认为是线性的,并且可以利用 Kalman滤波器来对这两种模型的参数进行估计,进而可以实现GPS信号失效后OCXO晶振频率的预测校正。然而老化率的非线性是对于较长时间而言的,在短时间内比如说一天,老化模型也可以被简化为线性,这大大方便了算法上的处理关于OCXO石英晶体振荡器的驯服保持模型的原理框图如图5.3所示
图中的三个开关S1、S2、S3在卫星工作状态正常时均处于开启状态,OCX0石英晶体振荡器直处于驯服状态,并且预测模型一直处于工作模式。如果系统经过判断确定卫星信号丢失,而且当时已经完成锁定,系统便会处于保持模式,三个开关均闭合, 这样老化和温度预测模型可以根据其预测的结果并以自己本身的输出作为观测量的输入来实现频率偏差的预测。预测模型的最终输出是出四项叠加而成:驯服的初始校正量、老化模型的预测输出、温度影响模型的预测输出和温度模型的延迟补偿量.
为了实现1PPS信号失效后的保持,必须先将由老化和温度变化引起的影响量分离开来,而分离算法的确定与这两种影响的性质有密切关系。一般认为老化的影响属于慢变,而温度的影响则相对变化较快,即在频域,老化的影响处于低频段,温度的影响处于较高的频段,这样就可以将它们分离开来,即采用不同类型和带宽的数字滤波器就可以实现这两种影响的分离国,ⅢRF、IRF2和RF为滤波器, 其中IRF和IRF3为1阶的低通滤波器,IRF2为3阶的低通椭圆滤波。
图中的IRF1是用来同时通过锁定状态下由温度变化引起的校正量中的高频变化部分和老化引起的低频变化部分,其带宽应该由高频分量确定。在一般的应用环境下,温度的最大变化率可以达到10℃h,而这里所采用的OCXO贴片晶振的线性频率温度系数为6~8ppb/40℃,于是可以得到最大温度变化率引起的频率漂移率达到4.17~5.56×10-4ppb/s。所以IRF的带宽被设计为3×10-3ppb/s(3mHz),即是最大频率温度漂移率的5.4倍,这样就可以通过所需要的信号,并且针对校正信号中由GPS接收机引入的高频噪声,进行每10倍频10dB的衰。
IRF2用于从经过RF滤波后的校正量中分离出老化的影响,那么其带宽由反映老化的低频分量决定。这里采用的OCXO晶振的老化率为0.5ppbd或者58×10-6ppb/s,所以IIRF2的带宽被设计为3×10-5ppbs(0.03mHz),即为秒老化率的5.2倍,并且其阻带衰减最小为50dB,带内波动为1.5dB,这样可以较好的过滤掉温度的影响。IRF2的输出直接输入给了老化的 Kalman预测模型,并且将其从IRFl的输出中减掉,可以提取出温度的影响。
IRF用和RF完全相同的设计,主要用来进一步抑制GPS接收机引入的噪声和消除IRF2输入输出信号的数字相减带来的毛刺。由于IRF1和IRF2处于温度影响预测模型的输入通道上,会使得校正量的预测产生延迟,使预测滞后于IRFl的输入信号。因此有必要在温度预测模型的输出加上一个延迟补偿模块,由它在保持模式时计算出相应的补偿量,并叠加到预测模型的输出信号上来消除延迟的影响。这里的延迟补偿量由温度预测模型输出的变化率和滤波器的延迟量相乘来得到,而滤波器的延迟量的最优估计为个小时,温度预测模型输出变化率由其输出对于时间的一阶微分的100点滑动平均来得到,其中每秒采集一个数据。
在进行系统测试时,被锁晶振采用高稳定度恒温晶体振荡器(10MHz±3Hz),GPS接收机选用LASSEN IQ型,采用5585B-PRS型铯原子频标作为频率参考,该铯原子频标可输出10MHz信号,具有较好的频率准确度及稳定度,其频率准确度优于5×10-12,秒级频率稳定度优于1×10-11/s。
采用相位比对的方法来测试被锁石英晶振的相对频率准确度,测试连接图如图5.1所示。将被锁定的晶体振荡器的10MHz频率信号和铯原子频标产生的10MHz频率信号分别作为开关门信号输入到精密时间间隔测试仪HP5370B(分辨率为20ps) 进行比对测试,HP5370B输出的时间间隔值与两个比对信号的相位差成正比。该时间间隔值的变化反映了两个信号的相位差的变化。计算相对频差的公式为:
其中,τ为取样周期;△T为在取样周期τ内两信号累积的相位差变化。由此式可以看出,△T的测量误差取决于HP5370B的时间间隔测量分辨率,最小为±20ps,也就是在ls闸门时间内相对晶振频率准确度为±2×10-11,但是随着采样时间r的增大,测量误差可以大大的减小,精度也不断提高。
由于天气等原因,对接收机工作有影响,所以做实验时适当选择比较好的天气。取样时间设定为40s,OCX0石英晶体振荡器在系统运行3小时后即进入锁定状态,开始对晶体振荡器锁定状态下与铯原子频标进行相位比对测试,记录系统连续工作10小时的数据,图5.2为OCXO晶振的频率准确度随时间的变化曲线。
从图5.2中可以看出,锁定后OCXO晶振的频率值在标称频率上下起伏,最大起伏约为9.0×10-11。通过计算,图5.2中所显示的频率平均准确度达到73×10-12,相对于所采用晶体振荡器的约5×10-10/d的老化率有明显改进,同时也说明晶振频率的漂移得到了一定程度的修正。
在进行石英贴片晶振频率稳定度测试时,由于实验室测频仪器测量的分辨率的有限,ls和10s的稳定度由直接测频法计算得到,而100s、1000s、5000s和10000S由比相间接测频法计算得到,相位比对数据采用上面图5.2中所采集的数据。锁定后, OCXO的频率稳定度测试结果如表5.1所示:
从表51中可以看出,锁定后的OCXO恒温晶体振荡器的短期稳定度基本保持了其本身的指标,而其中长期稳定度不是非常理想,这是由lPPS中存在的中长期相位漂移以及Kalman滤波和PID控制参数还不是很合理造成的,但总体较其本身指标,有一定程度的提高。因此,后续工作需要增大滤波时间常数,进一步继续优化 Kalman滤波和PID控制模型的参数,使得 Kalman滤波的收敛值更小,对OCXO晶振频率的调整幅度和频度更低。
在前面的文章中我们有提到过对基于GPS信号的OCXO驯服保持的总体设计方案进行了介绍,而在接下来的文章中CEOB2B晶振平台将对该系统中的关键部分:时间间隔测量模块、 Kalman滤波消除IPPS信号抖动模块以及频率校准等进行详细的阐述。
GPS秒信号的判断及处理
由第二章的叙述可知,GPS接收机正常工作的条件是至少同时可以接收到四颗以上卫星的有效信号,当接收到的卫星个数少于4颗时,定位和定时信息是不准确的甚至是错误的。
出现这样的原因一般有:个别卫星退出工作、天线安装位置不当、卫星故障等,这些都有可能造成接收到有效信号的卫星个数过少。而且有实验证明即使将接收天线从接收机上拔掉,在其后的很长一段时间内GPS接收机仍有PS输出,但此时的1PS与UTC已经有很大的差别,由此可见,GPS接收机完全有可能输出错误的lPPS信号。另外,信号在传递过程中受到来自外界电磁信号的干扰,GPS接收机输出的1PPS信号中可能含有毛刺,导致伪1PPS信号的产生,从而导致系统的误动作,因此有必要采取抗干扰措施。这里采用硬件开窗方法消除干扰2,原理如图4.1所示。
图中的CLK信号由高稳定度的恒温晶振提供,在系统上电复位后,启动单片机的串行通讯口,接收GPS信息,根据解码信息中的工作状态指示判断PPS的有效性。当初始触发分频信号到来之后,通过控制信号设置FPGA中的计数器在接收到的GPS1PS上升沿的附近产生一个短时间的高电平窗口信号,相当于一个与门,过滤掉窗口外的干扰信号。
另外,通过石英晶振单片机自带的外部中断模块来对去掉干扰后的PPS信号的上升沿进行检测,根据检测结果判断GPS接收机是否正常工作,来决定系统的工作模式是驯服模式还是保持模式,具体消除1PS中干扰脉冲的波形图如图4.2所示。
下面主要介绍处理干扰时的重点:
1.初始触发分频信号的判断
系统初始化后,用单片机的外部中断连续三次检测来自GPS接收机的1PPS信号,如果三次都检测到则给出初始触发分频信号。
2.设置合理的“窗口”信号
由于OCXO晶振的输出频率比较稳定,当初始触发分频信号到来吋刻起,利用FPGA中的计数器和OCXO石英晶体振荡器输出的倍频信号可以大致计算出下一个有效PPS脉冲的到来时刻,经过(1-△)秒后打开“窗口”,在计算得到的第二个PPS脉冲的到来时刻后的M秒后关闭该“窗口”,只要M选择得足够小,则抗干扰效果就非常的明显。
3.GPS信号的失效检测及处理
对于整个驯服系统来说,GPS信号丢失会产生严重的后果,原因可能是接收机接收到的卫星个数少于四颗,如上面所说的天线的安装,有源晶振,石英贴片晶振选用问题等,使接收机处于非正常工作状态。或者是GPS接收机与单片机模块或者与门逻辑的接口出现问题,使GPS秒脉冲信号或时间状态信息不能正常传输。
假如是第一种情况,接收模块可通过GPS接收机串口输出的状态信息判断其输出信号是否失效,后面的软件程序作出相应的处理。假如是第二种情况,属于两种功能模块之间的通信故障,系统相关模块不可能从GPS接收模块获得GPS的工作状态信息或者秒脉冲信号,GPS_1PPS秒脉冲入口处的电平不会出现任何变化。
此时,相关模块必须有独自判断GPS是否失效的能力。可以在“窗口”信号开通期间使用单片机相关外部中断模块,如果没有检测到正确跳变,说明GPS信号失效;如果“窗口”信号开通期间相关中断模块能捕捉到正确跳变,则说明GPS信号可能已恢复正常,此时系统可以继续对OCXO晶振进行校准。
晶振是种控制频率元件,在电路模块中提供频率脉冲信号源,在信号源传输的过程中晶振在电路配合下发出指令,通过与其他元件配合使用。
单片机晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的石英晶振,而通过电子调整频率的方法保持同步。晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机选择了12MHz石英晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。单片机中少不了石英贴片晶振的使用,那么关于单片机选择又有哪些窍门呢?
随着计算机和微电子技术的迅猛发展,单片机技术在各个行业得到了广泛的应用。由于单片机集成度高、体积小、功能强、功耗低、使用方便、价格低廉等一系列优点,被广泛的应用在各种智能仪表、工业控制及家电控制领域。根据系统设计的要求,单片机是整个系统的控制和数据处理中心,需要丰富的lO资源实。
现点阵液晶显示并与FPGA等芯片进行数据传输;需要串口完成与PC机通信的功能;需要该单片机具有片上A/D(模数)转换功能配合FPGA芯片,石英贴片晶振完成时间间隔测量,还需要L/O口中断、串口中断和A/D转换完成中断等中断资源满足设计中的各种中断处理,而且系统还需要在单片机上实现 Kalman滤波等算法,需要芯片具有硬件乘法器,具有一定的数据处理能力综合以上要求选择TI公司的MSP430系列中的MSP430F247型单片机作为整个系统的控制部分。
MSP430系列中的MSP430F247型单片机采用的是“冯-诺依曼”结构,具有16位结构的CPU,采用RSC指令集,最高工作频率8M,片上集成了64K的 FLASH ROM和1K的RAM,通过JAG接口,可以方便的实现在线编程和调试,非常利于软件程序的调试。
这款单片机的特点有:
(1)具有丰富的I/O资源,六个8位的I/O端口,所有的o位都可以独立程,任何输入输出和中断条件的组合都是可以的,其中PI和P2口的8位都具中断能力,如串口接收、发送中断和A/D转换完成中断等,所以此款单片机的中断能力得到大大提高,符合此系统设计需要用到中断处理的要求;
(2)具有丰富的外围模块:8路12位的A/D输入可实现A/D转换的功个 USART串行接口可实现与PC机通信的功能.
(3)具有硬件乘法器,可以大大的提高对数据的处理能力,例如实现 Kalman滤波等算法。该的单片机功能齐全,完全可以满足系统设计的需求,而且还有利于系统进一步的扩展升级。
通过前面CEOB2B晶振所发表的文章中相信大家对GPS系统以及晶振在GPS中的应用有了更深的了解.我们知道GPS输出的1PPS信号具有很好的长期稳定性,但是短期稳定性却很差。利用GPS信号来定时估计出晶振输出频率的偏差,并实时地进行校准,就可以得到短期稳定性和长期稳定性都很好的频率标准。锁定后的晶体振荡器能输出高精度的频率信号,其短期稳定度能保持本地振荡器的水平,优于l×10-11/s,并能在本地被控振荡器上有效地复现接收的标准时间频率信号的长期稳定度和准确度,锁定状态下频率准确度优于5×10-11,日漂移率达到10-13量级。
根据系统需要开发成本低、安全可靠的设计原则,提出了系统的整体设计方案。整个系统由高稳定度有源晶振,恒温石英晶体振荡器、GPS接收机、时间间隔测量模块、微处理器模块、高分辨率DA转化及信号调理模块、分频模块和显示等部分构成, 在控制软件(包括FPGA、单片机两部分)的控制下协调工作,其组成框图如图
3.1所示
方案各模块功能介绍
1.GPS接收机模块:接收GPS信号,输出标准IPPS秒信号(一般含有干扰脉冲),所以直接使用此信号不合适,必须通过解码判断其有效性并进行处理,然后用于校准石英晶振。
2.时间间隔测量模块:测量GPS接收机输出的1PPS信号和OCXO分频产的1Hz秒信号的上升沿之间的时间间隔值,并把测量结果传送给数据处理模块, 考虑到精度问题,先把OCXO晶振倍频到100MHz再分频成1Hz。
3.数据处理模块:在GPS信号有效时,接收时间间隔测量模块传送的数据运用Kalman滤波算法对测量的时间间隔进行数字滤波,消除lPPS信号的抖动。具体实现取相隔采样周期τ的两个滤波后的时间间隔差值△T1和△T2,得到相位差△T=△T2-△T1,用比时法计算相对频差:
其中,f6为被校准石英晶体振荡器的标称频率,Δf为石英晶体振荡器的测量频率与标称频率的差值。计算出频率4f后,根据OCXO的压控灵敏度系数K计算被校石英晶体振荡器控制电压的数字量,再通过高精度的D/A转换得出石英晶体振荡器的控制电压(控制电压U=U+Δf/K),达到校正晶体振荡器输出频率的目的。经过多次测量和控制,最终把石英晶体振荡器的准确度和稳定度都锁定在GPS卫星星载钟上。
同时, 系统还有自动记录功能,把校正数据,根据接收传感器组和辅助时钟模块发送的时间和温度等信息,把校正数据和与之对应的时间、温度等信息保存起来,GPS信号有效时,通过相应的算法分离出温度、老化等因素对石英贴片晶振的影响,如果检测到GPS信号失效后,结合采集到的实时温度和时间信息,利用失效前得到的预测模型,计算出老化和温度各自对输出频率的影响量,然后合成输出校正量来继续校准恒温晶振,使石英晶体振荡器能继续保持一定的精度。同时控制LCD的显示。
4.高分辨率D/A转换及信号调理模块:接收数据处理模块发送的控制数据, 将其转化为模拟控制电压,并通过相应的信号调理电路,使模拟电压的范围符合OCXO晶振的电压压控范围。
5.分频控制模块:将输入的经过校正后的原始频率信号进行分频,产生用于测量和同步输出的秒脉冲,并可以控制输出秒脉冲的脉冲宽度。
6.传感器组和辅助时钟模块:采集对OCXO晶振输出频率精确度有一定影响的温度和老化时间等信息,并传输给数据处理模块,为分离出温度、老化的影响提供相应的数据。
对石英晶体振荡器的锁定技术国内外已经展开了相关的研究,并且也已经有了些相应的产品。在国外,瑞士的 Special Time等公司都实现了利用卫星信号来锁定级频标的技术,并且将晶振分频得到的秒信号和GPS输出的1PPS信号同步起来,同步精度达到了15ns。对于二级频标的驯服保持技术,虽然有单位曾经做过研究,但是技术不成熟,因此没有推广。
由于近年来二级频标的大范围使用,为了节省成本并达到高稳定度和准确度的要求,加拿大的北方电信就此技术已经初步进行了研究。国内对于卫星信号锁定二级频标的技术已经有相关单位从事这方面的开发工作,但二级频标的精密驯服保持技术还处于起步阶段。
曾祥君曾提出采用高精度石英晶振对GPS时钟进行实时监测,建立了GPS时钟误差的测量模型,给出了一种高精度时钟的产生方法,同时他还提出用晶振信号同步GPS信号产生高精度时钟的一元二次回归数学模型,有效消除了GPS时钟信号的随机误差和晶振的累计误差,这对实际应用有很好的指导意义。国内外还利用相同的原理实现了基于GPS的铷钟的驯服。
例如,北京跟踪与通信技术研究所就实现了铷钟的自适应驯服,并且驯服时间更短, 精度更高;在国外, Juliano tibo narciso等人对数字和模拟两种方法实现的驯服晶振的性能进行了比较,结果表明模拟方法有更好的电气特性,但是电路复杂, 而数字化方法(PGA: Field Programmable Gate Array)实现简单,成本也比较低cha- Lung Cheng等提出了使用实时动态神经网络小波预测滤波器来消除大气延时,通过基于神经网络模型的预测控制器输出差值数字信号,经D/A转换来驯服石英晶振,贴片晶振的方法,但是实现复杂度很高。
英国的PTS公司生产出了基于GPS驯服铷钟的频率标准,结合DDS实现了输出频率在1μHz到80MHz的范围内可调。另外,美国的一家公司也开发出了相应的产品,型号为PRS10,其基准可以在GPS和其他高精度频率源之间进行切换。
CEOB2B晶振平台是目前全球首家专业性的电子商务平台,在这里你可以找到来自海内外上百种晶振品牌,为您提供免费产品推广,海内外石英晶振规格料号查询,下载服务等.CEOB2B晶振平台汇集了数千万中晶振产品,只要你需求的这里都给你准备好了,欢迎登入官网了解.
当离子枪使用时间过长使离子枪内部积碳、操作员在清扫真空腔时有异物掉入离子枪内、或因为离子枪冷却不良都会造成离子枪出力不稳定,使不良品数量增加。例如,如图4-1l1所示,当离子枪工作正常,出力稳定时,离子枪的实际刻蚀速度(设备根据设定的各参数计算出离子枪beam电压、放电电流并供给离子枪。离子枪在获得这些电压、电流后实际输出的离于束,对石英晶振晶片刻蚀的速度。
当离子枪工作不正常时,实际工作电压、电流也会与计算值产生很大偏差,因此就不能获得相应电流密度的离子束,使得刻蚀速度发生变化)等于设定的速度时,设备根据加工前测定的频率和设定的刻蚀速度计算出的加工时间与实际需要加工的时间相等,经过该时间的加工后可以达到目标频率。当离子枪的实际刻蚀速度大于设定的速度时,则计算出的加工时间大于实际需要加工的时间,此时,经过该时间的加工后,频率必然大于目标频率,而产生F+不良。
离子枪出力不稳定的处理方法
在实际生产中,离子枪的工作状态会逐渐变差。因此操作员遇到少量不良品的出现,不会意识到离子枪已发生异常,而是调整一些参数继续生产,直到出现大量不良品,通过调整参数也无法进行生产时才联系维修人员进行修理和保养。这样,不但会使离子枪长期处于不安定的状态,而且经常出现不良品。为此,本文通过前面的理论知识,利用公式(4.2)和(4.3)针对A品种的石英贴片晶振制作了一个简单的程序,界面如图4-12。
当操作元将制品放入设备中共,开始刻蚀加工时,只要输入设备仪表上的监控电压和电流,就可以知道现在的离子束刻蚀速度。只要与设定的刻蚀速度比较一下,当两速度相差较大时,便可知道离子枪已工作在不安定状态,应及时联系维修人员进行维修或保养。这样可以避免大量不良品的发生。
石英晶振频率微调国内外研究现状
石英晶体元器件的生产从晶片的切割到成品包装。在整个工艺流程中,以下几个工序主要影响着产品的频率。
1.晶振晶片的制作,根据目标频率制作出相应切割方位、尺寸的晶片。
2.在晶片表面镀敷导电电极层(根据要求可以镀银或金)。
3.通过微量增厚或减薄镀层的厚度,进行频率的微调。
国内外在石英晶体元器件生产过程中使用的频率微调方法主要有蒸发频率微调技术,喷射频率微调技术,激光刻蚀频率微调技术,离子刻蚀频率微调技术
如图1-1所示,蒸发频率微调技术是石英晶体元器件加工中出现最早的微调技术。是在真空状态下,对装有蒸发材料(银)的钨制料舟进行加热,使银气化沉积在石英晶体表面而达到频率微调的目的。因为此技术频率偏差大,效率低,原料消耗大,国内外的使用在逐渐减少。
如图1-2所示,喷射频率微调技术是蒸发频率微调技术的改进型。是在真空状态下,对装有蒸发材料(银)钼盒进行加热,使银气化后从钼盒的孔中喷出,沉积在石英晶振晶体表面而达到频率微调的目的。因为此技术易于实现,相应的设备简单,成本低,频率偏移不是很大。因此目前国内外使用较多。
如图1-3所示,激光刻蚀频率微调技术是将激光发生器产生的激光照射石英贴片晶振晶体表面的电极层,使其气化而达到减薄电极层的膜厚度,从而达到调整频率的目的。因其精度高,速度快而被广泛的应用于石英晶体元器件的生产中。
虽然激光刻蚀频率微调技术精度高,加工质量稳定,生产效率高,但是激光频率微调后石英晶振晶片表面并不是均匀一致的,而是凸凹不平的。因此,并不适用于所有的石英晶体的频率调整,特别是AT系列产品。为此20世纪80年代末期开始,出现了关于离子東刻蚀频率微调技术的研究,经过多年的发展,国内外有些厂商已开始应用。如图1-4所示,离子束刻蚀频率微调技术是将离子发生器产生的离子加速后轰击晶片表面,使晶片表面的电极层脱落,减薄电极层膜厚,从而达到调整频率的目的.
石英晶振是利用晶体的压电效应制成的一种石英晶体振荡器。因为它具有高稳定性、高精度和低功耗等特点,被广泛应用于各种电器产品中。近年来,各生产企业为了在激烈的市场竞争中取得胜利,不断进行改善,提高产品的性能,降低产品的成本。本论文通过对离子刻蚀技术的探讨,对石英晶振的离子刻蚀频率微调进行研究。最后通过实验,明确了离子刻蚀频率加工时,刻蚀速度的设定,从而改善了离子刻蚀频率微调的加工工艺。使得加工效率和制品的良品率得到了很大的提高。
石英晶振作为一种震荡器经过了几十年的发展。由于它具有成本低、高Q值、高精度和高稳定度的特点,因此在电子领域中的作用一直不能被其它振荡器所替代。
并且随着电子信息产业为代表的应用领域不断发展和扩大,其自身也不断发展和变化。品种不断增多,有温度补偿式(TCXO晶振)、压控式(VCXO晶振)和恒温补偿式(OCXO晶振)等。尺寸也不断出大变小,现在最小贴片石英晶振的尺寸已达到22×14×1.0(m)。目前,各生产厂家为了不断提高竞争力,正在努力开发精度更高、成本更低、尺寸更小的石英晶振。
近几年来,对石英晶体元件的需求量逐年上升,每年约增长10%。到2010年, 约为105.04亿只。随着产品不断向小型化和片式化发展,石英晶振晶体元件也不断向这个方向发展。我国晶体行业近年来不断引进先进技术,促使该行业不断发展。生产设备及生产工艺不断提高,使中国成为晶体行业的主要生产基地。
2010年压电晶体出口值达到10.25亿美元。但由于市场竞争的激烈,产品价格不断下降,同时各种生产成本(包括产品的原材料、水、电和劳动力价格等)不断上升,使得该行业利润空间不断被压缩,造成了该行业的竞争异常激烈。为此,各生产企业都不断的追求生产效率的提高、成本的降低以及制品精度的提高。在贴片晶振,石英晶振生产过程中,离子刻蚀频率微调较大程度的影响着石英晶振的生产效率和制品的精度。
建立晶振FRACAS系统重要实施步骤
1.建立晶振FRACAS管理小组和故障评审分析小组
晶振FRACAS管理小组是FRACAS管理小组的核心组成部分,是FRACAS运行系统的管理组织,负责监督 FRACAS系统的运行情况。在Z公司挑选2~3名有资质的人员来组成石英晶振,贴片晶振FRACAS系统管理小组,管理小组的职能就是为 FRACAS运行系统服务,促进FRACAS管理系统顺利的运行FRACAS管理小组建立之后,还需要负责故障评审分析小组人员的选拔工作。故障评审分析小组需要很强的业务能力和管理能力,因此主要选拔部门领导和公司的高级技术人员,使故障分析小组有足够的能力来分析出故障原因、模式及故障责任部门。石英晶振FRACAS管理小组每月对故障数据进行汇总,并组织故障评审分析小组来召开评审分析会议。
在会议召开前,石英晶振,贴片晶振FRACAS系统管理小组已经将汇总故障数据分发给故障评审小组人员。在故障评审会议上就可以直接有针对性进行故障评审分析工作,找出造成故障的根本原因。对于那些重复出现的故障,一定要反复论证,找出能解决这些故障的纠正措施,举一反三,争取让故障不再发生。在纠正措施施行之后,FRACAS管理小组还需要对纠正效果进行跟踪评价,保证会议上提出的决策得到落实。
2.FRACAS系统技术培训
(1)晶振FRACAS管理小组和评审分析小组的成员
培训时间:0.5~1天
培训内容:FRACAS原理、组织架构及实施流程
进行培训的目的是使石英晶体振荡器,石英晶振FRACAS系统管理人员的可靠性素质得到提高,提高对故障的分析能力,管理人员的水平提高了,FRACAS系统的运行工作就会更加容易的开展。
(2)客服、维修人员
培训时间:每个站点0.5~1天
培训内容:故障信息及维修信息收集
客服、维修人员担负着收集石英晶振,贴片晶振,有源石英晶体振荡器故障缺陷资料的责任,其收集到的数据的质量影响着故障分析工作的开展,为了保障收集故障数据的完整、客观。需要对他们进行培训,培训内容主要包括FRACAS的原理意义,及故障维修信息记录单的填写方法。
3.完善故障维修信息记录
由于Z公司条件有限,目前还没有开展对Z石英晶振的完善的可靠性试验获取石英晶振,贴片晶振可靠性缺陷的数据就比较困难,但Z公司石英晶振的出货量很大,从市场的反馈中可以获取大量的缺陷数据,这样就可以弥补可靠性缺陷数据不足的问题。目前售后人员只做了维修记录单,为了实现对缺陷的统计,可以在维修单加上一联故障维修信息记录单,写明故障缺陷详细信息,便于对缺陷信息进行统记.
4.规范故障维修信息
售后人员在填写故障维修记录单时,应将元器件的维修信息、故障原因、故障元器件的可靠性参数、对故障的影响等,这些信息必须填写准确详细。售后人员填写完成后将故障维修记录单上报给FRACAS管理小组,由管理小组对故障模式进行分类。
5.故障维修信息汇总
每个月FRACAS管理小组都要对故障维修数据进行汇总。管理小组对本月从售后部门收集的故障信息进行分析与分类,然后汇总,结合销售部门的销售数据,就可以得到返修率数据客服维修部门首先结合自身工作状况,依据本周期内的故障信息进行一个初步的总结,并形成客服部门故障意见报告,报告内容也是对本部门工作的一个总结,同时也可以为故障评审小组进行分析工作提供一个参考。
FRACAS管理小组总结对数据的收集分析结果,主要包括各个部门数据的汇总、故障分析的结论以及下一步的改进方向等.晶振FRACAC管理小组在评审会议召开前将汇总的分析结果分发给参加评审的人员,便于它们在会议前对近期的系统工作运行情况有个初步了解,这样有利于评审会议的审议。
6.建立故障模式数据库
对故障分析结束后,石英晶振,贴片晶振,有源晶振FRACAS管理小组人员和技术人员需要对出现的故障进行分类,并联合设计研发人员,将故障现象与故障模式一一对应上,结合技术研发人员的实际经验,建立故障模式数据库
7.理顺FRACAS系统与质量管理体系之间的关系
FRACAS与质量管理体系不是两个对立的管理体系,FRACAS可以看作质量管理体系下的一种有效的管理工具,通过建立FRACAS系统,可以增强企业对可靠性管理过程的控制,FRACAS系统与质量管理体系的目的是一样的,都是提高石英晶振,贴片晶振质量与可靠性。
虽然质量管理体系涉及到企业管理的各个方面,但是涉及到可靠性管理的故障处理文件不多,因此需要建立 FRACAS系统来提高企业的故障信息处理能力.FRACAS系统与质量管理体系之间是相辅相成的,在企业日常管理中,人员定要各司其职,为提高石英晶振,贴片晶振可靠性共同努力。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置